Rigaku

EDXRF APPLICATION NOTE SULFUR IN FUEL

#1535

SCOPE

On-line analysis of sulfur in fuel in the refining or blending process is demonstrated. Performance achieved meets the analytical requirements of ASTM-D4294-10.

BACKGROUND

On-line monitoring of the sulfur content of fuels in the refining or blending process is a critical step in insuring the end product meets specifications. Continuous monitoring allows for process optimization and minimizes lab testing requirements. The Rigaku NEX OL offers a simple and low maintenance on-line analytical technique for trending your processes. Results are communicated to your plant DCS

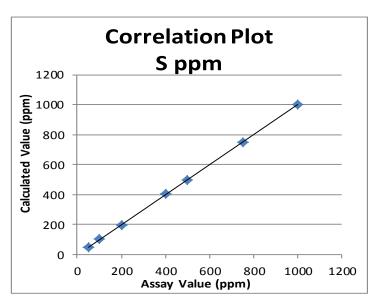
(distributed control system) via 4-20 mA current loops or MODBUS over Ethernet connection allowing for real time closed loop control.

INSTRUMENTATION

Model:	Rigaku NEX OL Analyzer
Excitation:	Direct
X-ray tube:	50 kV 4 W Ag-anode
Detector:	Silicon Drift Detector
Atmosphere:	Air
Measurement Time:	300 sec

SAMPLE PREPARATION

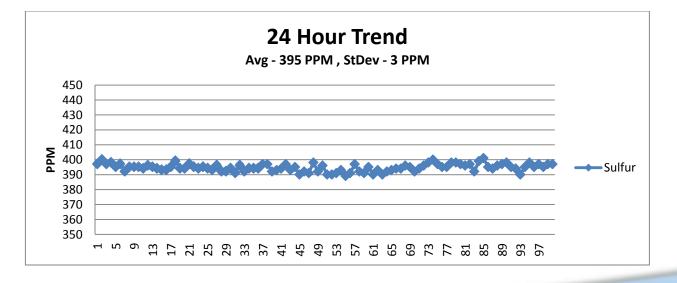
Certified Reference Material was used to establish an empirical calibration. All samples were measured in a static position using the auxiliary sample input loop.



Rigaku

CALIBRATION

A simple linear empirical calibration was built using a suite of 7 certified calibration standards.


Element: S Units: ppm		SEE: 6.11 R ² : 0.9997	
Sample ID	Assay Value	Calculated Value	
1	50	48	
2	100	103	
3	200	197	
4	400	405	
5	500	499	
6	750	747	
7	1000	1002	

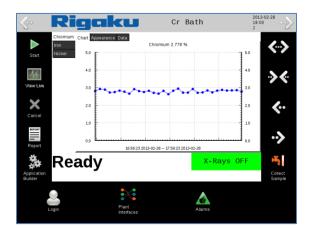
PRECISION

Instrument repeatability (precision) is determined by ten repeat analyses of a static sample using a 300 sec measurement time per analysis. Precision results are summarized here.

Element: S Units: ppm				
Sample	Standard Value	Average Value	Std Dev	
6	400	395	3	

Page 2

Rigaku


DETECTION LIMIT

Ten repeat analyses of a blank Mineral Oil sample were taken with the sample in a static position to determine the standard deviation. The Lower Limit of Detection (LLD) is then defined as three times the standard deviation.

Element	Empirical LLD ppm	Measurement Time
S	4.3	300 sec

NEX OL FEATURES & BENEFITS

- Real-time process control
- Trend analysis charting
- Capable of measuring elements AI to U, depending on application
- 50 kV X-ray tube excitation source with high resolution and count rate Si Drift Detector (SDD) technology
- Industrial touch screen user interface
- Unique tool less flow cell design
- 4-20 mA or MODBUS over Ethernet results reporting

CONCLUSION

The Rigaku NEX OL offers real time trend analysis in a simple yet powerful system. Quantification of your fuel stream can now be made on-line according to ASTM D4294-10.